Potential Habitability and Biosignature Preservation at the Nili Trough Site David J. Des Marais NASA, Ames Research Center, Moffett Field, CA ## Key Factors Affecting Astrobiology Potential - Diversity and geologic context - -Habitable conditions sometime in past - Diversity of habitable environments - -Duration of habitable conditions - Preservation of key evidence - Accessible by MSL rover #### Range of Conditions that Sustains Life ### Thriving in Darkness Oxidation-reduction reactions can sustain life, even without photosynthesis (and without O_2) Oxidants: O_2 ; CO_2 ; minerals/fluids with SO_x , Fe^{3+} , NO_x , etc. Reductants: H_2 ; C_{red} ; minerals/fluids with S_{red} , NH_4 +, Fe^{2+} or other reduced species Minerals must be identified comprehensively and definitively to search for potential habitats and life Indian Ocean basalt 1200 m below sea floor (M. Fisk) Indian 765E 30 C Oregon dunite with microbes in galleries (Fisk et al., 2006) #### Nili Fossae: Mafic source rock and altered product # Long-Term Sustainability of a High-Energy, Low-Diversity Crustal Biome Li-Hung Lin,^{1,2*} Pei-Ling Wang,³ Douglas Rumble,⁴ Johanna Lippmann-Pipke,⁵ Erik Boice,⁶ Lisa M. Pratt,⁶ Barbara Sherwood Lollar,⁷ Eoin L. Brodie,⁸ Terry C. Hazen,⁸ Gary L. Andersen,⁸ Todd Z. DeSantis,⁸ Duane P. Moser,⁹ Dave Kershaw,¹⁰ T. C. Onstott¹ Geochemical, microbiological, and molecular analyses of alkaline saline groundwater at 2.8 kilometers depth in Archaean metabasalt revealed a microbial biome dominated by a single phylotype affiliated with thermophilic sulfate reducers belonging to *Firmicutes*. These sulfate reducers were sustained by geologically produced sulfate and hydrogen at concentrations sufficient to maintain activities for millions of years with no apparent reliance on photosynthetically derived substrates. #### **Duration of Habitable Conditions** - Fluvio-lacustrine features and location consistent with confluence of long-term regional drainage - Near-subsurface deposits consistent with widespread evidence of persistent near-subsurface aqueous environments # Stratigraphy and Processes in Isidis-Nili Fossae Isidis Basin and Syrtis Major lavas are major time-stratigraphic markers Significant gradation (sedimentary? aeolian? alluvial?) between Isidis basin formation and Syrtis lava emplacement How does this constrain habitability? #### Conditions That Could Sustain Life on Mars: Changes Over the Eons ## Preservation of Key Evidence - Primary productivity: higher is better; but on Earth, oxygenic photosynthesis is major factor - Protection from destructive agents is critical - Organisms, thermal, oxidation - Preservation enhancers - Reducing conditions - Sequestration in phyllosilicates, silica, carbonates, evaporites, etc. - Burial #### Minerals & Rocks that Preserve Fossil Records Residence Time **Least Stable** **Dominant Process Controlling Loss** <1x10⁴ yrs lce Climatic warming <1x10⁶ yrs Halides, sulfates **Dissolution** <2x10⁸ yrs **Metallic sulfides** Oxidation $< 3.5 \times 10^{8} \text{ yrs}$ Clay-rich shales Water-laid pyroclastics Recrystallization **Marine carbonates Metallic oxides** Metamorphism Dissolution <3.8x10⁸ yrs **Phosphates** Silica Deep burial Recrystallization Metamorphism Most Stable ## Access to Key Geologic Units - Accessible terrane - Exhumed subsurface deposits - Fluvio-lacustrine deposits - Relatively unaltered by weathering # Stratigraphy and Processes in Isidis-Nili Fossae Isidis Basin and Syrtis Major lavas are major time-stratigraphic markers Significant gradation (sedimentary? aeolian? alluvial?) between Isidis basin formation and Syrtis lava emplacement How does this constrain habitability? 5 kilometers (Representative vertical and horizontal distances, not to scale) # Low-Ca Pyroxene Phyllosilicate Fe-Phyllosilicate Nili Fossae, Mars MRO CRISM VIS/NIR J. Mustard, et al., 2007 Unaltered basement enriched in low-Ca pyroxene as capping unit and on the floor Thick section of phyllosilicate-rich Noachian basement exposed in Fossae walls Phyllosilicate-bearing basement beneath volcanics **Syrtis Major Volcanics** #### Microbial Communities in Hypersaline Environments